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Figure 1: MonoNeRF learns a generalizable dynamic radiance field from multiple monocular videos. While video-based

NeRF learns the field from positional encoding, we propose to learn from the extracted video features, which are generalizable

to scenes. In this way, MonoNeRF supports scene editing applications (Top) and unseen frame synthesis (Middle). Compared

with DynNeRF [13], MonoNeRF could adapt to novel scenes (Bottom) with hundreds of fine-tuning steps (about 10 minutes).

Abstract

In this paper, we target at the problem of learning
a generalizable dynamic radiance field from monocular
videos. Different from most existing NeRF methods that
are based on multiple views, monocular videos only contain
one view at each timestamp, thereby suffering from ambi-
guity along the view direction in estimating point features
and scene flows. Previous studies such as DynNeRF dis-
ambiguate point features by positional encoding, which is
not transferable and severely limits the generalization abil-

†: Corresponding author.

ity. As a result, these methods have to train one inde-
pendent model for each scene and suffer from heavy com-
putational costs when applying to increasing monocular
videos in real-world applications. To address this, We
propose MonoNeRF to simultaneously learn point features
and scene flows with point trajectory and feature corre-
spondence constraints across frames. More specifically,
we learn an implicit velocity field to estimate point tra-
jectory from temporal features with Neural ODE, which
is followed by a flow-based feature aggregation module
to obtain spatial features along the point trajectory. We
jointly optimize temporal and spatial features in an end-
to-end manner. Experiments show that our MonoNeRF is
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able to learn from multiple scenes and support new ap-
plications such as scene editing, unseen frame synthesis,
and fast novel scene adaptation. Codes are available at
https://github.com/tianfr/MonoNeRF.

1. Introduction
Novel view synthesis [6] is a highly challenging prob-

lem. It facilitates many important applications in movie

production, sports event, and virtual reality. The long stand-

ing problem recently has witnessed impressive progress due

to the neural rendering technology [28, 26, 9]. Neural Ra-

diance Field (NeRF) [28, 54, 22, 27, 46, 51, 52] shows

that photo-realistic scenes can be represented by an implicit

neural network. Concretely, taken as a query the position

and viewing direction of the posed image, the network out-

puts the color of each pixel by volume rendering method.

Among these approaches, it is supposed that the scene is

static and can be observed from multiple views at the same

time. Such assumptions are violated by numerous videos

uploaded to the Internet, which usually contain dynamic

foregrounds, recorded by the monocular camera.

More recently, some studies aim to explore how to learn

dynamic radiance field from monocular videos [10, 13, 21,

49, 50, 40]. Novel view synthesis from monocular videos

is a challenging task. As foreground usually dynamically

changes in a video, there is ambiguity in the view direc-

tion to estimate precise point features and dense object mo-

tions (i.e., scene flow [44]) from single views. In other

words, we can only extract the projected 2D intra-frame lo-

cal features and inter-frame optical flows, but fail to obtain

precise 3D estimations. Previous works address this chal-

lenge by representing points as 4D position features (co-

ordinate and time), so that the learned positional encoding

provides specific information for each 3D point in the space

[10, 13, 21, 49, 50, 40]. Based on positional encoding, these

methods make efforts on exploiting scene priors [12, 48, 49]

or adding spatio-temporal regularization [10, 13, 21, 50] to

learn a more accurate dynamic radiance field.

However, while positional encoding successfully dis-

ambiguates 3D points from monocular 2D projections, it

severely overfits to the training video clip and is not trans-

ferable. Therefore, existing positional encoding based

methods have to optimize one independent model for each

dynamic scene. With the fast increase of monocular videos

in reality, they suffer from heavy computational costs

and lengthy training time to learn from multiple dynamic

scenes. Also, the lack of generalization ability limits fur-

ther applications of scene editing which requires interaction

among different scenes. A natural question is raised: can we

learn a generalizable dynamic radiance field from monocu-

lar videos?

In this paper, we provide a positive answer to this ques-

tion. The key challenge of this task is to learn to extract

generalizable point features in the 3D space from monocu-

lar videos. While independently using 2D local features and

optical flows suffers from ambiguity along the ray direction,

they provide complementary constraints to jointly learn 3D

point features and scene flows. On the one hand, for the

sampled points on each ray, optical flow provides generaliz-

able constraints that limit the relations of their point trajec-

tories. On the other hand, for the flowing points on each es-

timated point trajectory, we consider that they should share

the same point features. We estimate each point feature by

aggregating their projected 2D local features, and design

feature correspondence constraints to correct unreasonable

trajectories.

To achieve this, we propose MonoNeRF to build a

generalizable dynamic radiance field for multiple dynamic

scenes. We hypothesize that a point moving along its tra-

jectory over time keeps the consistent point feature. Our

method concurrently predicts 3D point features and scene

flows with point trajectory and feature correspondence con-

straints in monocular video frames. More specifically, we

first propose to learn an implicit velocity field that encodes

the speed from the temporal feature of each point. We su-

pervise the velocity field with optical flow and integrate

continuous point trajectories on the field with Neural ODE

[5]. Then, we propose a flow-based feature aggregation

module to sample spatial features of each point along the

point trajectory. We incorporate the spatial and temporal

features as the point feature to query the color and density

for image rendering and jointly optimize point features and

trajectories in an end-to-end manner. As shown in Figure 1,

experiments demonstrate that our MonoNeRF is able to ren-

der novel views from multiple dynamic videos and support

new applications such as scene editing, unseen frame syn-

thesis, and fast novel scene adaption. Also, in the widely-

used setting of novel view synthesis on training frames from

single videos, our MonoNeRF still achieves better perfor-

mance than existing methods despite that cross-scene gen-

eralization ability is not required in this setting.

2. Related Work
Novel view synthesis for static scenes. The long stand-

ing problem of novel view synthesis aims to construct new

views of a scene from multiple posed images. Early works

needed dense views captured from the scene [19, 14]. Re-

cent studies have shown great progress by explicitly repre-

senting 3D scenes as neural representations [26, 28, 9, 7,

51, 25, 18, 38]. However, these methods train a separate

model for each scene and need various training time for op-

timization. PixelNeRF [54] and MVSNeRF [4] proposed

feature-based methods that directly render new scenes from

the encoded features. Additionally, many researchers stud-

ied the generalization and decomposition abilities of novel
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Figure 2: The overview of our generalizable dynamic field. We first exploit an implicit velocity field from the extracted

temporal feature F temp. Then, we calculate point trajectory on the velocity field, and exploit the spatial feature F sp with

the proposed flow-based spatial feature aggregation module. We incorporate F temp and F sp as the point feature F dy for

rendering dynamic scene and design Lopt and Lcorr to jointly optimize point features and trajectories.

view synthesis model [3, 37, 29, 15, 1, 18, 41]. Compared

with these methods, our method studies the synthesis and

generalization ability of dynamic scenes.

Space-time view synthesis from monocular videos.
With the development of neural radiance field in static

scenes, recent studies started to address the dynamic scene

reconstruction problem [21, 50, 10, 20, 31, 32]. In monocu-

lar videos, a key challenge is that there exist multiple scene

constructions implying the same observed image sequences.

Previous approaches addressed this challenge by using 3D

coordinates with time as point features and adding scene

priors or spatio-temporal regularization. Scene priors such

as shadow modeling [49], human shape prior [48, 23], and

facial appearance [12] are object-specific and closer to spe-

cial contents. Spatio-temporal regularization such as depth

and flow regularization [10, 13, 21, 50] and object deforma-

tions [40] are more object-agnostic, but weaker in applying

consistency restriction to dynamic foregrounds. In this pa-

per, we study the challenge by constraining point features.

Scene flow for reconstruction. Scene flow firstly pro-

posed by [44] depicts the motion of each point in the

dynamic scene. Its 2D projection i.e., optical flow con-

tributes to many downstream applications such as video

super-resolution [45], video tracking [42], video segmenta-

tion [43], and video recognition [2]. Several methods stud-

ied the scene flow estimation problem based on point cloud

sequences [30, 24]. However, estimating scene flow from an

observed video is an ill-posed problem. In dynamic scene

reconstruction, previous works [21, 13] established discrete

scene flow for pixel consistency in observation time. In

this way, the flow consistency in observed frames can only

be constrained, leading to ambiguity in non-observed time.

Du et al. [10] proposed to build the continuous flow field in

a dynamic scene. Compared to these methods, we study the

generalization ability of the flow field in different scenes.

3. Approach

In this section, we introduce the proposed model that we

term as MonoNeRF. We first present the overview of our

model and then detail the approach of each part. Lastly, we

introduce several strategies for optimizing the model.

3.1. MonoNeRF

MonoNeRF aims to model generalizable radiance field

of dynamic scenes. Our method takes multiple monocu-



lar videos as input and uses optical flows, depth maps, and

binary masks of foreground objects as supervision signals.

Those signals could be generated by pretrained models au-

tomatically. We build the generalizable static and dynamic

fields for backgrounds and foregrounds separately. For gen-

eralizable dynamic field, we suppose that spatio-temporal

points flow along their trajectories and hold consistent fea-

tures over time. We first extract video features by a CNN

encoder and generate the temporal feature vectors based on

the extracted features. Then, we build an implicit velocity

field from the temporal feature vectors to estimate point tra-

jectories. Next, we exploit the estimated point trajectories

as indexes to find the local image patches on each frame

and extract the spatial features from the patches with the

proposed flow-based feature aggregation module. Differ-

ent from NeRF [28] that uses scene-agnostic point positions

to render image color, we aggregate the scene-dependent

spatial and temporal features as the final point features to

render foreground scenes with volume rendering. Finally,

we design the optical flow and feature correspondence con-

straints for jointly learning point features and trajectories.

For generalizable static field, we suppose backgrounds are

static and each video frame is considered as a different view

of the background. Since some background parts may be

occluded by the foreground, we design an effective strat-

egy to sample background point features. In the end, we

combine the generalizable static and dynamic fields for ren-

dering free-point videos.

3.2. Generalizable Dynamic Field

In this section, we introduce our generalizable dynamic

field that renders novel views of dynamic foregrounds. We

denote a monocular video as V = {V i, i = 1, 2...,K}
consisting of K frames . For each frame V i, ti is the ob-

served timestamp and Πi is the projection transform from

the world coordinate to the 2D frame pixel coordinate. As

Figure 2 shows, given a video V , we exploit a video en-

coder Edy to extract the video feature vector represented

as Edy(V ) and generate the temporal feature vector F temp

with a multiple layer perceptron (MLP) Wtemp: Edy(V ) →
F temp. We build the implicit velocity field based on F temp.

Implicit velocity field. We suppose points are mov-

ing in the scene and represent a spatio-temporal point as

p = (xp, tp) including the 3D point position xp and time

tp. We define Φ as the continuous point trajectory and

Φ(p, t) denotes the position of point p at timestamp t. We

further define the velocity field v which includes the 3D

velocity of each point. The relationship between point ve-

locity and trajectory is specified as follows,

∂Φ(p, t)

∂t
= v

(
Φ(p, t), t

)
, s.t. Φ(p, tp) = xp. (1)

v is conditioned on F temp and implemented by an MLP

Wvel: (F temp(V ),Φ, t) → v. We calculate the point tra-

jectory at an observed timestamp ti with Neural ODE [5],

Φ(p, ti) = xp +

∫ ti

tp

v
(
Φ(p, t), t

)
dt. (2)

We take Φ(p, ti) as an index to query the spatial feature.

Flow-based spatial feature aggregation. We employ

Πi to project Φ(p, ti) on V i and find the local image patch

indexed by the projected position Πi(Φ(p, ti)). We extract

the feature vector F i
sp from the patch with the encoder Edy

and a fully connected layer fc1,

F i
sp(V ;p) = fc1

(
Edy

(
V i; Πi(Φ(p, ti))

))
. (3)

In practice, Edy

(
V i; Πi(Φ(p, ti))

)
is implemented by us-

ing Edy to extract the frame-wise feature map of V i and

sampling the feature vector at Πi(Φ(p, ti)) with bilinear

interpolation. The spatial feature vector F sp is then cal-

culated by incorporating {F 1
sp,F

2
sp, ...,F

K
sp} with a fully

connected layer fc2,

F sp(V ;p) = fc2
(
F 1

sp(V ;p),F 2
sp(V ;p), ...,FK

sp(V ;p)
)
.

(4)

Finally, we incorporate F temp and F sp as the point feature

vector F dy ,

F dy(V ;p) = concat{F temp(V ),F sp(V ;p)}. (5)

We build the generalizable dynamic field based on F dy .

Dynamic foreground rendering. Taking a point p and

its feature vector F dy(V ;p) as input, our generalizable dy-

namic radiance field Wdy: (p,F dy(V ;p)) → (cdy, σdy, b)
predicts the volume density σdy , color cdy and blending

weight b of the point. We follow DynNeRF [13] and uti-

lize b to judge whether a point belongs to static background

or dynamic foreground. We exploit volume rendering to ap-

proximate each pixel color of an image. Concretely, given a

ray r(u) = o+ ud starting from the camera center o along

the direction d through a pixel, its color is integrated by

Cdy(r) =

∫ uf

un

Tdy(u)σdy(u)cdy(u)du, (6)

where un, uf are the bounds of the volume rendering depth

range and Tdy(u) = exp(− ∫ u

un
σdy(r(s))ds is the accu-

mulated transparency. We simplify c(u) = c(r(u),d) and

σ(u) = σ(r(u)) here and in the following sections. Next

we present the optical flow and feature correspondence con-

straints that jointly supervise our model.

Optical flow constraint. We supervise v with the opti-

cal flow fgt. In practice, it can only approximate the back-

ward flow fgt
bw and forward flow fgt

fw between two con-

secutive video frames [39]. We hence estimate the point



backward and forward trajectory variations during the pe-

riod that the point passes between two frames and calculate

optical flows by integrating the trajectory variations of each

point along camera rays. Formally, given a ray r(u) through

a pixel on the frame V i at time ti, for each point on the ray

i.e., p(u) = (r(u), ti) the trajectory variations ΔΦbw back

to ti−1 and ΔΦfw forward to ti+1 are obtained by the fol-

lowing equation,

ΔΦ{bw,fw}(p(u)) =
∫ t{i−1,i+1}

ti

v
(
Φ(p(u), t), t

)
dt.

(7)

We follow previous works [21, 13] and exploit the volume

rendering to integrate pseudo optical flows f bw and ffw by

utilizing the estimated volume density σdy of each point,

f{bw,fw}(r) =
∫ uf

un

Tdy(u)σdy(u)ΔΦi
{bw,fw}(p(u))du,

(8)

where ΔΦi
{bw,fw} = Πi(ΔΦ{bw,fw}) denotes we use Πi

to project 3D trajectory variations on the image plane of V i.

We supervise the pseudo flows by the ground truth flows,

Lopt =
∑
r

(
f{bw,fw}(r)− fgt

{bw,fw}(r)
)
. (9)

In this way, the relation of point trajectories along a ray is

limited by the optical flow supervision.

Feature correspondence constraint. According to Sec-

tion 3.1, a point moving along the trajectory holds the same

feature and represents the consistent color and density. For

each ray rcurr at the current time ti through a pixel of V i,

we warp the ray from the neighboring observed timestamps

ti−1 and ti+1 as rbw and rfw separately by using (7),

r{bw,fw}(u) = rcurr(u) + ΔΦ{bw,fw}(pcurr(u)), (10)

where pcurr(u) = (rcurr(u), ti). We render the pixel color

from the point features not only along the ray rcurr at the

time ti, but also along the wrapped rays rbw at ti−1 and rfw
at ti+1. The predicted pixel color Cdy is rendered by using

(6) and supervised by the ground truth colors Cgt
dy ,

L{bw,curr,fw} =
∑
r

||Cdy(r{bw,curr,fw})−Cgt
dy(r)||2.

(11)

The feature correspondence constraint Lcorr is defined as

Lcorr = Lbw + Lcurr + Lfw. (12)

Lcorr supervises the predicted color and point features F dy .

3.3. Generalizable Static Field

As mentioned in Section 3.1, for some background parts

occluded by the changing foreground in the current view,

their features implying the foreground cannot infer the cor-

rect background information. However, the occluded parts

could be seen in non-occluded views with correct back-

ground features. To this end, given a point position x, the

background point feature vector F st is produced by

F st(V ;x) = fc3

(
Est(V

∗; Π∗(x))
)
, (13)

where fc3 is a fully connected layer and Est denotes

the image encoder. V ∗ and Π∗ are the non-occluded

frame and corresponding projection transform respectively.

Est(V
∗; Π∗(x)) denotes that we find the local image patch

at Π∗(x) and extract the feature vectors with an image en-

coder Est similar to Edy

(
V i; Πi(Φ(p, ti))

)
. Since there is

no prior in which frames they can be exposed, we apply a

straightforward yet effective strategy by randomly sampling

one frame from the other frames in the video. We represent

the static scene as a radiance field to infer the color cst and

density σst by using an MLP Wst: (x,d,F st(V ;x)) →
(cst, σst). The expected background color Cst is given by

Cst(r) =

∫ uf

un

Tst(u)σst(u)cst(u)du, (14)

where Tst(t) = exp(− ∫ u

un
σst(r(s))ds. We employ fore-

ground masks M to optimize the static field by supervising

the pixel color in each video frame in the background re-

gions (where M(r) = 0),

Lst =
∑
r

||(Cst(r)−Cgt
st(r))(1−M(r))||2, (15)

where Cgt
st represents the ground truth color.

3.4. Optimization

The final dynamic scene color combines the colors from

the generalizable dynamic and static fields,

Cfull(r) =

∫ uf

un

Tfull(u)σfull(u)cfull(u)du, (16)

where

σfull(u)cfull(u) = (1− b)σst(u)cst(u) + bσdy(u)cdy(u),
(17)

and applies the reconstruction loss,

Lfull =
∑
r

||Cfull(r)−Cgt
full(r)||2. (18)

Next we design several strategies to optimize our model.

Point trajectory discretization. While point trajectory

can be numerically estimated by the continuous integral (2)

with Neural ODE solvers [5], it needs plenty of time for

querying each point trajectory. To accelerate the process,



Table 1: Novel view synthesis on training frames from single videos. While this setting does not require cross-scene gener-

alization ability, our MonoNeRF still achieves better performance.

PSNR ↑ / LPIPS ↓ Jumping Skating Truck Umbrella Balloon1 Balloon2 Playground Average

NeRF [28] 20.58 / 0.305 23.05 / 0.316 22.61 / 0.225 21.08 / 0.441 19.07 / 0.214 24.08 / 0.098 20.86 / 0.164 21.62 / 0.252

NeRF [28] + time 16.72 / 0.489 19.23 / 0.542 17.17 / 0.403 17.17 / 0.752 17.33 / 0.304 19.67 / 0.236 13.80 / 0.444 17.30 / 0.453

Yoon et al. [53] 20.16 / 0.148 21.75 / 0.135 23.93 / 0.109 20.35 / 0.179 18.76 / 0.178 19.89 / 0.138 15.09 / 0.183 19.99 / 0.153

Tretschk et al. [40] 19.38 / 0.295 23.29 / 0.234 19.02 / 0.453 19.26 / 0.427 16.98 / 0.353 22.23 / 0.212 14.24 / 0.336 19.20 / 0.330

Li et al. [21] 24.12 / 0.156 28.91 / 0.135 25.94 / 0.171 22.58 / 0.302 21.40 / 0.225 24.09 / 0.228 20.91 / 0.220 23.99 / 0.205

NeuPhysics [33] 20.16 / 0.205 25.13 / 0.166 22.62 / 0.212 21.02 / 0.426 16.68 / 0.238 22.54 / 0.265 15.10 / 0.367 20.48 / 0.282

DynNeRF [13] 24.23 / 0.144 28.90 / 0.124 25.78 / 0.134 23.15 / 0.146 21.47 / 0.125 25.97 / 0.059 23.65 / 0.093 24.74 / 0.118

MonoNeRF 24.26 / 0.091 32.06 / 0.044 27.56 / 0.115 23.62 / 0.180 21.89 / 0.129 27.36 / 0.052 22.61 / 0.130 25.62 / 0.106

GT w/o. w/o. Oursw/o. 

Figure 3: Qualitative results of jointly optimizing Balloon2 and Umbrella scenes. The foregrounds of two scenes are mixed

without F dy . Our method renders more accurate novel views and predicts plausible scene flows (listed beside the RGB

images) by incorporating F temp and F sp.

GT Ours DynNeRF

Figure 4: Novel view synthesis on unseen frames. Com-

pared to the ground truths, our model could transfer to new

motions, whereas DynNeRF [13] only interpolates in the

training frames.

we propose to partition [tp, ti] into N evenly-spaced bins

and suppose the point velocity in each bin is a constant. The

point trajectory can be estimated by the following equation,

Φ(p, ti) = xp +

N∑
n=1

v
(
Φ(p, t+Δt), t+Δt

)
Δt, (19)

where Δt = n
N (ti − tp).

Depth-blending restriction. To calculate the blending

weights within a foreground ray in the generalizable dy-

namic field, only the points in close proximity to the esti-

Table 2: Quantitative results of novel view synthesis on un-

seen frames. We used the first four frames for training and

tested the performance on the rest eight frames.

Balloon2 / Truck PSNR ↑ SSIM ↑ LPIPS ↓
NeRF [28] 20.33 / 20.26 0.662 / 0.669 0.224 / 0.256

NeRF [28] + time 20.22 / 20.26 0.661 / 0.639 0.218 / 0.256

NeuPhysics [33] 19.45 / 20.24 0.478 / 0.517 0.343 / 0.285

DynNeRF [13] 19.99 / 20.33 0.641 / 0.621 0.291 / 0.273

MonoNeRF 21.30 / 23.74 0.669 / 0.702 0.204 / 0.174

mated ray depth are regarded as foreground points, whereas

points beyond this range are excluded. We penalize the

blending weights of non-foreground points in foreground

rays. Specifically, given a ray r(u) through a pixel and

the pixel depth ud, We penalize the blending weights of the

points on the ray out of the interval (ud − ε, ud + ε),

Ldb =
∑

u∈(un,ud−ε)∪(ud+ε,uf )

||b(r(u))||2, (20)

where b(r(u)) is the blending weight at the position r(u).
ε controls the surface thickness of the dynamic foreground.

Mask flow loss. We further constrain the consistency

of point features by minimizing blending weight variations



GT DynNeRF (500 Steps) Ours (100 Steps) Ours (200 Steps) Ours (500 Steps)
LPIPS: 0.620

LPIPS: 0.528

LPIPS: 0.542

LPIPS: 0.548

LPIPS: 0.585 LPIPS: 0.576 LPIPS: 0.535

LPIPS: 0.402 LPIPS: 0.307LPIPS: 0.400

LPIPS: 0.451 LPIPS: 0.355 LPIPS: 0.316

LPIPS: 0.434 LPIPS: 0.439 LPIPS: 0.365

Figure 5: Fast novel scene adaption. We used the pretrained model on Balloon2 scene to fine-tune the novel views of

unseen dynamic scenes. We employed LPIPS [55] (the lower is better) to evaluate the image similarity, which provides more

correlation with human judgment than other indexes.

along trajectories,

Lmf =
∑

i,j∈{1,2,..,K}
||b(Φ(p, ti))− b(Φ(p, tj))||2, (21)

where b(Φ(p, t)) denotes the blending weight at Φ(p, t).
Other regularization. We follow previous works [21,

13, 10] to use the depth constraint, sparsity constraint, and

motion regularization and smoothness to train the model.

4. Experiments
In this section, we conducted experiments on the Dy-

namic Scene dataset [53]. We first tested the performance

of synthesizing novel views from single videos, and then we

tested the generalization ability from multiple videos. In the

end, we carried out ablation studies on our model.

4.1. Experimental Setup

Dataset. We used the Dynamic Scene dataset [53] to

evaluate the proposed method. Concretely, it contains 9

video sequences that are captured with 12 cameras by using

a camera rig. We followed previous works [21, 13] and de-

rived each frame of the video from different cameras to sim-

ulate the camera motion. All the cameras capture images at

12 different timestamps {ti, i = 1, 2..., 12}. Each training

video contains twelve frames sampled from the ith cam-

era at time ti followed DynNeRF [13]. We used COLMAP

[35, 36] to approximate the camera poses. It is assumed in-

Table 3: Ablation studies on F dy , F temp, and F sp by

jointly optimizing Balloon2 and Umbrella scenes.

PSNR ↑ / LPIPS ↓ Umbrella Balloon2 Average

w/o. F dy 20.59 / 0.256 22.79 / 0.159 21.57 / 0.230

w/o. F temp 22.75 / 0.175 24.85 / 0.098 23.80 / 0.137

w/o. F sp 22.81 / 0.181 25.09 / 0.143 23.95 / 0.162

Ours 23.44 / 0.169 25.44 / 0.093 24.44 / 0.131

trinsic parameters of all the cameras are the same. Dynam-

icFace sequences were excluded because COLMAP fails to

estimate camera poses. All video frames were resized to

480×270 resolution. We generated the depth, mask, and

optical flow signals from the depth estimation model [34],

Mask R-CNN [16], and RAFT [39].

Implementation details. We followed pixelNeRF [54]

and used ResNet-based MLPs as our implicit velocity field

Wvel and rendering networks Wdy and Wst. For gener-

alizable dynamic field, we utilized Slowonly50 [11] pre-

trained on Kinetics400 [2] dataset as the encoder Edy with

the frozen weights. We removed the final fully connected

layer in the backbone and incorporated the first, second,

and third feature layers for querying F sp. We simplified

(4) that F sp at time ti is sampled from {V i−1,V i,V i+1}.

For generalizable static field, we used ResNet18 [17] pre-

trained on ImageNet [8] as the encoder Est. We extracted a

feature pyramid from video frames for querying F st. The

vector sizes of F temp, F sp, F dy , and F st are 256. Please
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Figure 6: Our model supports many scene editing appli-

cations such as background changing, foreground moving,

scaling, duplicating, flipping, and arbitrary combinations.

Table 4: Numeric comparisons on Ldb, Lmf ,F st, and ran-

dom sampling strategy.

PSNR ↑ / LPIPS ↓ Training frames Unseen frames Unseen videos

w/o. Ldb 22.76 / 0.148 20.69 / 0.348 21.68 / 0.345

w/o. Lmf 22.95 / 0.135 20.95 / 0.354 21.67 / 0.342

w/o. F st 21.75 / 0.230 19.79 / 0.371 21.81 / 0.337

w/o. random 17.30 / 0.435 16.93 / 0.512 20.28 / 0.353

Ours 23.02 / 0.130 21.30 / 0.304 22.63 / 0.277

Table 5: Comparisons of solving the continuous trajectory

by using ODE solver [5] and our discretization method.

Method N = 1 N = 2 ODE solver [5]

PSNR ↑ / LPIPS ↓ 22.90 / 0.136 22.97 / 0.134 23.75 / 0.129

refer to the supplementary material for more details.

4.2. Novel View Synthesis from Single Video

In this section, we trained the models from single

monocular videos, where existing methods are applicable

to this setting. Specifically, we first tested the performance

on training frames, which is the widely-used setting to eval-

uate video-based NeRFs. Then, we tested the generalization

ability on unseen frames in the video, where other existing

methods are not able to transfer well to the unseen motions.

Novel view synthesis on training frames. To evaluate

the synthesized novel views, we followed DynNeRF [13]

and tested the performance by fixing the view to the first

camera and changing time. We reported the PSNR and

LPIPS [55] in Table 1. We evaluated the performance of Li

et al. [21], Tretschk et al. [40], NeuPhysics [33], and Chen

et al. [13] from the official implementations. Even with-

out the need of generalization ability, our method achieves

better results.

Novel view synthesis on unseen frames. We split the

video frames into two groups: four front frames were used

for training and the rest of eight unseen frames were utilized

to render novel views. Figure 4 shows that our model suc-

cessfully renders new motions in the unseen frames, while

w/o. w.

w.

w/o.

w/o. w.

w/o. w. 

Figure 7: Ablation studies on Ldb, Lmf , random sampling,

and F st.

DynNeRF [13] only interpolates novel views in the training

frames. The reported PSNR, SSIM [47], and LPIPS scores

in Table 2 quantitatively verify the superiority of our model.

4.3. Novel View Synthesis from Multiple Videos

In the section, we tested the novel view synthesis per-

formance on multiple dynamic scenes. It is worth noting

that as existing methods can only learn from single monoc-

ular videos, they are not applicable to the settings that need

to train on multiple videos. Then, we evaluated the novel

scene adaption ability on several novel monocular videos.

Lastly, we conducted a series of scene editing experiments.

Novel view synthesis on training videos. We selected

Balloon2 and Umbrella scenes to train our model. As

shown in Figure 3 and Table 3, our model could distin-

guish foregrounds from two scenes and perform well with

F dy . Specifically, it predicts generalizable scene flows with

F temp and renders more accurate details with F sp.

Novel view synthesis on unseen videos. We explored

the generalization ability of our model by pretraining on

the Balloon2 scene and fine-tuning the pretrained model

on other scenes. Figure 5 presents the results of four un-

seen videos: Playground, Skating, Truck, and Balloon1.

We also pretrained DynNeRF [13] on the Balloon2 scene

for a fair comparison. While DynNeRF only learns to ren-

der new scenes from scratch, our model transfers to scenes

with correct dynamic motions. By further training with 500

steps, our model achieves better image rendering quality

and higher LPIPS scores, which takes about 10 minutes.

Scene editing. As Figure 6 shows, our model fur-

ther supports many scene editing applications by directly

processing point features without extra training. Chang-

ing background was implemented by exchanging the static

scene features between two scenes. Moving, scaling, dupli-



cating and flipping foreground were directly applied by op-

erating video features in dynamic radiance field. The above

applications could be combined arbitrarily.

4.4. Ablation Study

We conducted a series of experiments to examine the

proposed Ldb, Lmf , F st, random sampling strategy, and

trajectory discretization method. We show in Figure 7 that

Ldb deblurs the margin of the synthesized foreground in

novel views, Lmf keeps the blending consistency in differ-

ent views for delineating the foreground more accurately,

The random sampling strategy successfully renders static

scene without dynamic foreground, and backgrounds of

two scenes are mixed without F st. We also show the

numeric comparisons of Ldb, Lmf ,F st, and random sam-

pling strategy in Table 4. In Table 5, our discretization

method reaches comparable results with ODE solvers [5]

and achieves higher performance with the increase of N .

5. Conclusion

In this paper, we study the generalization ability of novel

view synthesis from monocular videos. The challenge is the

ambiguity of 3D point features and scene flows in the view-

ing directions. We find that video frame features and optical

flows are a pair of complementary constraints for learning

3D point features and scene flows. To achieve this, we pro-

pose a generalizable dynamic radiance field called MonoN-

eRF. We estimate point features and trajectories from the

video features extracted by a video encoder and render dy-

namic scenes from points features. Experiments show that

our model could learn a generalizable radiance field for dy-

namic scenes, and support many scene editing applications.
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